Vapor Pressures and Vaporization Enthalpies of a Series of Ethanolamines

Simon Kapteina, Krzysztof Slowik, Sergey P. Verevkin,* and Andreas Heintz

Department of Physical Chemistry, University of Rostock, Hermannstr. 14, 18051 Rostock, Germany

The vapor pressures and molar enthalpies of vaporization, $\Delta_{l}^{g}H_{m}$, of 2-amino-ethanol, 2-(methylamino)ethanol, 2-(ethylamino)-ethanol, 2-(dimethylamino)-ethanol, and 2-(diethylamino)-ethanol have been determined using the transpiration method. The strength of intermolecular hydrogen bonding in ethanolamines has been derived and discussed in terms of the difference between the enthalpy of vaporization of an alkanolamine and an appropriate homomorph (alkylamine).

Introduction

Alkanolamines are widely used in the petroleum and natural gas industry for the removal of acid gas impurities such as CO₂ and H₂S from gas mixtures. The design of gas treating processes requires knowledge of the vapor-liquid equilibrium behavior of the aqueous acid gas + alkanolamine systems as well as knowledge of the vapor pressures of pure alkanolamines at ambient temperature. Alkanolamines are high boiling liquids. Precise measurement of the vapor pressures of low volatile compounds at ambient temperature is usually difficult; that is why the most published data are referred to elevated temperatures (from 353 to 373 K up to the boiling point). In this work, we have applied the transpiration method,^{1,2} which is suitable for performing vapor pressure measurements of high boiling liquids in a temperature range essentially close to ambient temperature and to the reference temperature 298.15 K. Additionally, we collected from the literature³⁻¹⁷ a large number of the primary experimental results on the temperature dependencies of vapor pressures and treated them in order to derive vaporization enthalpies at the reference temperature 298.15 K. Our collection together with our own results helps to assess the strength of hydrogen bonding in alkanolamines. It is well established that the presence of more than one electronegative group in amino-alcohols and their derivatives stabilizes certain molecular conformations by intramolecular hydrogen bonding. Intramolecular hydrogen bonding of aliphatic amino-alcohols has therefore been extensively studied by IR, dipole moment, NMR, and microwave techniques.¹⁸⁻²¹ From the IR frequency shifts, it has been found that, among the various substituted alcohols, $X(CH_2)_nOH$, where $X = NH_2$, NR_2 , OH, or a halogen, the nitrogen-substituted derivatives gave the largest frequency shifts, pointing to the important role of basicity in hydrogen bonding.²¹ On the other hand, in such a liquid phase, also intermolecular association between amino-alcohols has to be considered. In this work, we studied the vapor pressures of 2-amino-ethanol, 2-(methylamino)-ethanol, 2-(ethylamino)-ethanol, 2-(dimethylamino)-ethanol, and 2-(diethylamino)-ethanol and derived their enthalpies of vaporization at the reference tempera-

* To whom correspondence should be addressed. E-mail: sergey.verevkin@uni-rostock.de. Fax: ++49 381 498 6502. Phone ++49 381 498 6508. ture 298.15 K. The latter values give some insight into the character and strength of hydrogen bonding in pure liquid ethanolamines.

Experimental Section

The samples of alkanolamines studied in this work were of commercial origin; 2-amino-ethanol, 2-(methylamino)ethanol, 2-(ethylamino)-ethanol, and 2-(dimethylamino)ethanol were purchased from Aldrich, and 2-(diethylamino)ethanol was purchased from Fluka. Their purities determined by gas chromatography (GC) were better than 0.999 mole fraction.

The vapor pressures and enthalpies of vaporization of ethanolamines were determined using the transpiration method^{1,2} in a saturated nitrogen stream and applying the Clausius-Clapevron equation. About 0.5 g of the sample was mixed with glass beads and placed in a thermostated U-shaped tube having a length of 20 cm and a diameter of 0.5 cm. Glass beads with a diameter of the glass spheres of 1 mm provide a surface large enough for rapid vaporliquid equilibration. At constant temperature $(\pm 0.1 \text{ K})$, a nitrogen stream was passed through the U-tube and the transported amount of gaseous material was collected in a cooling trap. The flow rate of the nitrogen stream was measured using a soap bubble flow meter and was optimized in order to reach the saturation equilibrium of the transporting gas at each temperature under study. The flow rate of the nitrogen stream in the saturation tube should not be too slow in order to avoid the transport of material from the U-tube due to diffusion. On the other hand, the flow rate should not be too fast in order to ensure the saturation of the nitrogen stream with the vaporizing species. We tested our apparatus at different flow rates of the carrier gas in order to check the lower boundary of the flow below which the contribution of the vapor condensed in the trap by diffusion becomes comparable to the transported one. In our apparatus, the contribution due to diffusion was negligible at a flow rate down to 0.45 dm $^3 \cdot h^{-1}.$ The upper limit for our apparatus where the speed of nitrogen could already disturb the equilibration was found at a flow rate of 9.0 $dm^3 \cdot h^{-1}$. Thus, we carried out the experiments in the flow rate interval (2.5 to 4.8) $dm^3 \cdot h^{-1}$ which ensured that the transporting gas was in saturated equilibrium with the coexisting liquid phase in the saturation tube. The amount of condensed substance was determined by GC analysis using an external standard (hydrocarbon n-C $_n$ H $_{2n+2}$). The saturation vapor pressure, p_i^{sat} , at each temperature, T_i , was calculated from the amount of the product collected within a definite period of time. Assuming that Dalton's law of partial pressures applied to the nitrogen stream saturated with the substance, i, of interest is valid, we calculated the values of p_i^{sat} with

$$p_{i}^{\rm sat} = m_{i} R T_{\rm a} / V M_{i}; \quad V = V_{\rm N_{2}} + V_{i}; \quad (V_{\rm N_{2}} \gg V_{i}) \quad (1)$$

where $R = 8.31451 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$, m_i is the mass of the transported compound, M_i is the molar mass of the compound, and V_i is its volume contribution to the gaseous phase. V_{N_2} is the volume of the carrier gas, and T_{a} is the temperature of the soap bubble meter. The volume of the carrier gas, V_{N_2} , was determined from the flow rate and the time measurement. Data of p_i^{sat} have been obtained as a function of temperature and were fitted by using the equation¹

$$R \ln p_i^{\text{sat}} = a + \frac{b}{T} + \Delta_{\text{l}}^{\text{g}} C_{\text{p}} \ln \left(\frac{T}{T_0}\right)$$
(2)

where a and b are adjustable parameters and $\Delta_{\rm I}^{\rm g}C_{\rm p}$ is the difference of the molar heat capacities of the gaseous and liquid phases, respectively. T_0 appearing in eq 2 is an arbitrarily chosen reference temperature (which has been chosen to be 298.15 K). Consequently, from eq 2, the expression for the vaporization enthalpy at the temperature T is given by

$$\Delta_{\rm l}^{\rm g} H_{\rm m}(T) = -b + \Delta_{\rm l}^{\rm g} C_{\rm p} T \tag{3}$$

Values of $\Delta_l^g C_p$ (see Table 2) have been derived using experimental values of the isobaric molar heat capacities, $C_{\rm p}^{\rm l}$, of ethanolamines²² according to a procedure developed by Chickos et al.^{23,24} If experimental data on the $\Delta_{\rm l}^{\rm g}C_{\rm p}$ values of ethanolamines were not available, they were calculated using the group-additivity method suggested by Chickos et al.^{23,24} The latter method has been checked for reliability using experimental results from Maham et al.²² The experimental results, the parameters *a* and *b* are listed in Table 1. Enthalpies of vaporization measured by the transpiration method are usually accurate within $\pm (0.3$ to 0.5) kJ·mol⁻¹. This error was determined by the average deviation of experimental $\ln(p_i^{\text{sat}})$ from the linear correlation presented in eq 2. The dominant source of the experimental error was the uncertainty in the amount of transported mass, m_i , determined by GC analysis which was assessed to be reliable within (1 to 3)%. The accuracy of the volume, $V_{\rm N_2}$, measurements from the flow rate was established to be ± 0.001 dm³. The accuracy of maintaining and measuring the temperature was within ± 0.1 K. However, the two latter factors hardly contribute to the experimental error.

Results and Discussion

The vapor pressures of ethanolamines (see Table 2) have been reported in refs 3–17, but these authors (except for Steele et al.^{14,17}) did not calculate the enthalpy of vaporization from their results. Therefore, enthalpies of vaporization, $\Delta_{\rm g}^{\rm g} H_{\rm m}(298.15 \text{ K})$, have been derived in this work for the first time using eqs 2 and 3 and the data obtained have been compared with our results (see Table 2). The comprehensive compilation by Stephenson and Malanowski⁹ contains vapor pressure results for some ethanolamines over a wide temperature range. The origin of the data presented there is unclear, and the methods of measurement as well as the errors of the measurements and purities of the compounds investigated are unknown. Despite this, we also treated the results from ref 9 using eqs 2 and 3 and calculated $\Delta_1^g H_m(298.15 \text{ K})$ for the sake of comparison with our results. However, the agreement or disagreement with our data in each case should be questionable (see Table 2).

The vapor pressures of 2-amino-ethanol have been measured in this work in the temperature range (279.0 K to 324.4 K). Although 2-amino-ethanol has a melting temperature of 283.8 K, the rate of crystallization of the sample in our experiments was very slow and the sample was measured as an undercooled liquid down to 279.0 K. the values of the enthalpy of vaporization, $\Delta_l^g H_m$ (298.15 K), of 2-amino-ethanol derived from the vapor pressures available from the literature obtained by ebulliometric and static measurements are very close to our result, (59.6 \pm 0.3) kJ·mol⁻¹. The agreement of our results for the vapor pressures at different temperatures with the literature data is illustrated in Figure 1.

The enthalpies of vaporization, $\Delta_l^g H_m(298.15 \text{ K})$, of 2-(methylamino)-ethanol and 2-(dimethylamino)-ethanol derived in this work are in remarkable agreement with those calculated from vapor pressures available in the literature (see Table 2). The agreement of our results for the vapor pressures at different temperatures with the literature data is presented in Figure 2.

The disagreement with the vaporization enthalpies of 2-(diethylamino)-ethanol available from the literature (see Table 2) is larger than that for other ethanolamines; however, our result, $\Delta_l^g H_m(298.15 \text{ K}) = (52.5 \pm 0.2) \text{ kJ} \cdot \text{mol}^{-1}$, coincides with those derived from the recent high temperature (332.5 to 475.6 K) ebulliometric measurements done by Steele et al.¹⁷

Close agreement of the enthalpies of vaporization, $\Delta_l^g H_m(298.15 \text{ K})$, of ethanolamines derived by different experimental techniques (see Table 2) has shown the reliability of our results derived by the transpiration method. Thus, we have been encouraged to use our own values of $\Delta_l^g H_m(298.15 \text{ K})$ for further thermochemical calculations as follows.

The existence of intramolecular hydrogen bonding in ethanolamines is well documented by spectroscopic measurements in the gaseous phase and dilute solutions in nonassociating inert solvents documented by IR-spectroscopic results in CCl₄ and C₂Cl₄.^{19,20} However, exact quantification of intramolecular hydrogen bonds in the pure liquid state is difficult because both kinds of hydrogen bonding, inter- and intramolecular bonding, are expected to be present in liquid ethanolamines. The extent of intermolecular hydrogen bonding in ethanolamines can be assessed with the help of the vaporization enthalpies and the concept of homomorph compounds. Similar calculations have been performed recently¹ for the comparison of the enthalpies of vaporization of n-alkanols and those of alkanes. Indeed, for alkanes, only nonassociating intermolecular van der Waals interactions determine the values of their enthalpies of vaporization. The enthalpies of vaporization of alkanes which are obtained by replacing the OH group by a CH₃ group (R-CH₃) will essentially represent the nonassociative contribution of the alcohol (R-OH) to its enthalpy of vaporization. The difference of the enthalpies of vaporization between alkanols, ROH, and its homomorph, RCH₃, presents a crude measure for the

Table 1. Results for	or the Vapor	Pressure, p, and	Enthalpy of Va	porization, $\Delta_1^{g} H_{m}$,	Obtained by the	Transpiration Method
		······································		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·····

T^a	m^b	$V_{\mathrm{N_2}^c}$	p^d	$(p_{\mathrm{exptl}} - p_{\mathrm{calcd}})$	$\Delta^{ m g}_{ m l} H_{ m m}$	T^a	m^b	$V_{\mathrm{N_2}}{}^c$	p^d	$(p_{\mathrm{exptl}} - p_{\mathrm{calcd}})$	$\Delta^{ m g}_{ m l} H_{ m m}$
K	mg	dm ³	Pa	Pa	$kJ \cdot mol^{-1}$	К	mg	dm ³	Pa	Pa	kJ∙mol ^{−1}
2-Amino-ethanol; $\Delta_1^8 H_m(298.15 \text{ K}) = (59.63 \pm 0.28) \text{ kJ} \cdot \text{mol}^{-1}$ $\ln(p/\text{Pa}) = (285.55/R) - [75 \ 702.78/R(T/\text{K})] - (53.9/R) \ln[(T/\text{K})/298.15]$											
279.0	6.31	30.57	8.48	0.0	60.67	309.4	4.50	1.71	105.6	-1.4	59.03
281.1	6.51	25.26	10.55	0.3	60.55	312.4	4.46	1.34	133.7	0.4	58.87
294.0	4.33	5.44	32.21	0.3	59.86	315.4	4.54	1.08	168.9	3.5	58.71
297.2	3.85	3.80	40.90	-0.6	59.69	318.4	5.06	1.00	202.7	-1.4	58.54
300.2	4.21	3.20	53.03	0.2	59.52	321.4	3.93	0.620	255.9	5.0	58.38
303.2	4.21	2.68	63.30	-3.5	59.36	324.5	4.21	0.541	313.4	4.4	58.21
306.3	4.33	2.09	83.66	-1.1	59.20						
			2 11	2-(Methylamino)-et n(p/Pa) = (293.13/F	thanol; $\Delta_{\mathrm{l}}^{\mathrm{g}} H_{\mathrm{m}}$ 2) - [75 847.]	$(298.15 \text{ K}) = (8000 \text{ K})^{-1}$	57.84 ± 0 $60.4/R) \ln 2$.21) kJ·m [(<i>T</i> /K)/298	ol ⁻¹ 3.15]		
274.9	3.09	7.521	13.94	-0.3	59.25	296.3	4.23	1.511	92.12	1.2	57.95
277.9	8.41	14.969	18.89	0.0	59.07	299.2	3.90	1.115	114.92	0.8	57.78
282.1	7.48	9.032	27.60	0.0	58.81	302.3	4.89	1.115	144.04	-0.8	57.59
285.1	3.24	2.987	35.99	0.1	58.63	308.4	3.24	0.468	227.06	-0.5	57.22
288.2	3.45	2.447	46.63	-0.2	58.44	311.4	3.03	0.355	279.89	-2.1	57.04
291.1	5.25	2.843	60.98	1.4	58.27	314.3	5.25	0.497	346.76	1.3	56.87
291.2	2.97	1.631	60.03	-0.1	58.26	317.2	5.19	0.408	417.20	-4.2	56.69
293.2	5.25	2.447	70.77	-0.1	58.14	320.2	3.90	0.248	514.60	-0.7	56.51
			lı	2-(Ethylamino)-eth h(p/Pa) = (309.40/H	hanol; $\Delta_{l}^{g}H_{m}(R) - [81848.2]$	298.15 K = (6 12/R(T/K)] - (6	$51.01 \pm 0.60.4/R$ ln	44) kJ•mo [(<i>T</i> /K)/298	$[-1]{3.15}$		
282.5	1.59	2.745	16.25	-0.4	62.10	306.2	1.53	0.359	118.62	-7.3	60.45
284.5	1.04	1.445	20.09	0.0	61.97	308.5	1.68	0.305	152.81	2.6	60.29
287.3	1.05	1.120	26.12	0.2	61.77	309.2	1.75	0.300	161.15	2.7	60.24
290.3	1.04	0.849	34.03	0.2	61.56	311.5	1.83	0.269	188.40	0.1	60.08
293.2	1.00	0.650	43.00	-0.6	61.36	312.2	3.34	0.450	205.17	6.8	60.03
296.3	1.56	0.762	56.71	0.0	61.14	315.3	3.04	0.338	249.17	0.2	59.81
299.3	1.59	0.581	75.86	3.2	60.93	318.3	2.85	0.263	300.21	-8.3	59.60
302.3	1.59	0.472	93.31	0.7	60.72	321.3	3.80	0.282	373.95	-6.7	59.39
505.5	1.71	0.595	120.57	1.2	60.50						
			2- lı	(Dimethylamino)-on(p/Pa) = (274.71/F)	ethanol; $\Delta_l^{g} H$ R) - [65 563.3]	m(298.15 K) = 83/R(T/K)] - (6)	$(46.51 \pm 63.9/R) \ln$	0.38) kJ·n [(<i>T</i> /K)/298	nol ^{–1} 3.15]		
277.9	3.634	0.562	189.28	7.75	47.81	294.1	7.732	0.397	550.21	-10.66	46.77
278.3	2.655	0.401	193.41	6.40	47.78	295.0	6.096	0.298	577.98	-16.58	46.72
278.6	6.253	0.976	186.98	-4.24	47.76	295.2	3.660	0.169	612.82	10.54	46.70
280.2	3.370	0.441	221.68	6.58	47.66	298.0	6.065	0.248	688.27	-31.71	46.52
280.7	2.600	0.329	229.07	5.99	47.63	298.2	3.571	0.136	736.49	7.38	46.51
281.8	6.662	0.811	237.35	-4.22	47.56	301.1	5.656	0.192	828.09	-45.15	46.33
283.2	3.634	0.377	277.20	10.14	47.47	301.2	6.067	0.193	884.45	5.83	46.32
284.3	6.065 9.766	0.629	277.06	-11.65	47.40	304.2	7.259	0.193	1056.43	2.33	46.13
286.2	3.766	0.313	343.79 201.70	14.01	47.28	304.2	0.813	0.160	1019.27	-34.84	46.13
200.0	7.449	0.002	321.79	-14.95	47.20	307.2 207.2	0.000	0.144	1200.71	7.00	40.94
209.2	0.217 6.604	0.333	419.90 306 74	14.00 	47.09	307.2	7.103	0.100	1521.84	-10.01	45.94
200.4	7 040	0.460	130.74	-14.37	47.07	313.3	5 928	0.120	1874 70	80.03	45.75
292.2	3.713	0.209	503.85	8.68	46.90	316.3	7.620	0.000	2207.22	101.13	45.36
292.4	6.191	0.364	481.71	-20.04	46.88	010.0	1.020	0.000	2201.22	101.10	10.00
			2	2-(Diethylamino)-et	thanol; $\Delta_1^{\rm g} H_{\rm m}$	(298.15 K) = (298.15 K)	52.45 ± 0	.16) kJ•m	ol ⁻¹		
970 0	9 90	1 010	51 47	u(p/ra) = (303.80/F)	$i_{j} = [11076.]$	$\frac{22}{n(1/N)} = (8)$	o2.0/K) ln م 91	0 4F0	007 10 [01.00	5.0	50.69
210.2 979 G	2.00 1.799	1.010	50.96	2.0	54.10	290.0	4.01	0.400	204.13	0.9	02.00 59.61
210.0	1.702	0.718	00.00 55.44	-0.5	04.07 52.07	290.0	4.00	0.402	199.30	-3.2	02.01 59.61
219.0 281 9	2.409 2.36	0.910	63 47	-1.1	53.85	200.0 207 2	2.040 1 02	0.240	199.10 991 99	-2.0	52.01 52.52
282.7	1 842	0.557	69.73	-2.0	53 73	291.5	3.873	0.354	232.89	0.7	52.52
284.2	2.38	0.557	81.26	04	53 61	290.2	2 315	0.004	202.00	-2.7	52.45
285.1	2.41	0.575	90.24	3.4	53.53	301.2	3,936	0.288	288.73	2.4	52.20
285.3	1.937	0.471	86.81	-1.5	53.51	302.2	2.30	0.161	302.99	-3.8	52.12
287.3	2.25	0.480	100.81	-2.4	53.35	302.2	5.24	0.362	307.03	0.2	52.12
288.0	2.28	0.450	108.90	-0.1	53.29	304.2	3.952	0.238	350.91	-0.7	51.95
288.3	2.31	0.437	113.48	1.9	53.27	307.2	4.046	0.200	426.67	-2.8	51.71
290.2	2.33	0.391	127.40	-1.6	53.11	310.2	3.684	0.150	517.99	-4.2	51.46
291.0	4.01	0.625	137.38	0.3	53.04	313.2	3.747	0.125	632.21	0.3	51.21
292.3	4.25	0.600	151.34	0.2	52.94	316.3	4.550	0.125	767.66	1.8	50.95
293.3	4.63	0.606	162.91	0.2	52.85	318.3	5.195	0.125	876.55	11.7	50.79
295.3	4.015	0.455	188.11	-0.3	52.69						

^{*a*} Temperature of saturation. N₂ gas flow (0.22 to 0.69) cm³·s⁻¹. ^{*b*} Mass of transferred sample condensed at T = 243 K. ^{*c*} Volume of nitrogen used to transfer mass *m* of the sample. ^{*d*} Vapor pressure at temperature *T* calculated from *m* and the residual vapor pressure at T = 243 K.

contribution to the enthalpy of vaporization due to the selfassociation of alcohols. A remarkable constancy of the difference in enthalpies of vaporization at 298.15 K of (21 to 25) kJ·mol⁻¹ was observed, indicating that the contribution to $\Delta_l^g H_m$ of alcohols due to *inter*molecular hydrogen bonding is nearly independent of the chain length. These results could be interpreted quantitatively using the extended real associated solution (ERAS) model. $^{\rm 1}$

Following this pattern, experimental data of the vaporization enthalpies, $\Delta_{\rm I}^{\rm g} H_{\rm m}(298.15 \text{ K})$, of ethanolamines at 298.15 K (Table 2, this work) were compared with those of their homomorphs (alkylamines): $(30.3 \pm 0.1) \text{ kJ} \cdot \text{mol}^{-1}$ for

	$technique^a$	temperature range	$\Delta^{ m g}_{ m l} {C_{ m p}}^b$	$\Delta^{\rm g}_{\rm l} H_{\rm m}(298{\rm K})^c$	ref
		K	$\overline{{ m J}{\cdot}{ m mol}^{-1}{ m K}^{-1}}$	$kJ \cdot mol^{-1}$	
2-amino-ethanol		341 - 453	53.9	57.9	Wilson, 1935
	\mathbf{E}	303 - 373		57.4	Leibush, 1947
	\mathbf{E}	379.3 - 443.5		59.5	Matthews, 1950
	\mathbf{E}	338.6 - 444.1		60.3	McDonald, 1959
	S	325.1 - 443.2		57.7	Danov, 1969
	S	293.1 - 297.6		54.8	Gustin, 1974
	S	298.2 - 308.2		56.1	Touhara, 1982
		310 - 444		60.8	Stephenson, 1987
	\mathbf{E}	351.5 - 613.2		59.0	Daubert, 1987
	\mathbf{E}	357.6 - 439.7		59.4	Tochigi, 1999
	Т	279.0 - 324.4		$\textbf{59.6} \pm \textbf{0.3}$	this work
2-(methylamino)-ethanol	S	298.2 - 308.2	60.4	57.5	Touhara, 1982
	\mathbf{E}	351 - 410		57.6	Smirnova, 1987
	S	268.8 - 401.4		57.9	Noll, 1998
	E	340.3 - 461.0		57.0 ± 0.5	Steele, 1997
	Т	274.9 - 320.2		$\textbf{57.8} \pm \textbf{0.2}$	this work
2-(dimethylamino)-ethanol	\mathbf{E}	333 - 423	63.9	47.6	Quitzsch, 1970
	S	298.2 - 308.2		47.9	Touhara, 1982
		350 - 387		47.6	Stephenson, 1987
		323 - 408		46.1	Stephenson, 1987
	Т	277.9 - 316.3		$\textbf{46.5} \pm \textbf{0.4}$	this work
2-(diethylamino)-ethanol	S	283 - 318	82.6	58.5 ± 1.3	Lebedeva, 1977
-	\mathbf{E}	332.5 - 475.6		52.5 ± 0.2	Steele, 2002
		328 - 433		55.1	Stephenson, 1987
	Т	278.2 - 318.3		$\textbf{52.5} \pm \textbf{0.2}$	this work

Table 2. Compilation of Data on the Enthalpies of Vaporization, $\Delta_1^g H_m$ (298.15 K), of Aminoethanols

Figure 1. Experimental data of the vapor pressures of 2-aminoethanol: \bigcirc , this work; \bullet , Matthews et al.,⁵ \blacktriangle , Tochigi et al.,¹¹ \diamondsuit , Danov et al.;⁷ *, McDonald et al.,⁶ \triangle , Leibush and Shorina;⁴ +, Daubert et al.,¹⁰ \blacksquare , Stephenson and Malanowski.⁹

propylamine available from ref 25 as well as $31.2 \text{ kJ} \cdot \text{mol}^{-1}$ for (*N*-methyl)-propylamine, $35.7 \text{ kJ} \cdot \text{mol}^{-1}$ for (*N*-ethyl)-propylamine, $30.7 \text{ kJ} \cdot \text{mol}^{-1}$ for (*N*,*N*-dimethyl)-propylamine, and $39.9 \text{ kJ} \cdot \text{mol}^{-1}$ for (*N*,*N*-dimethyl)-propylamine estimated according to the group-additivity procedure by Lebedev and Miroshnichenko.²⁶ The differences of the enthalpies of vaporization between ethanolamines and alkylamines are presented in Table 3. These differences could be interpreted as contribution to the enthalpy of vaporization due to intermolecular bonding in ethanolamines. In other words, these differences are a rough measure for the strength of *inter*molecular hydrogen bonding.

According to Table 3, it is evident that 2-amino-ethanol exhibits the highest value assigned to the *inter*molecular hydrogen bond, $-28.3 \text{ kJ}\cdot\text{mol}^{-1}$. This is close to the hydrogen bonding energy for 1 mol of the N-H···O bonds and indicates that the majority of hydrogen bonds in

Figure 2. Experimental data of the vapor pressures of 2-(methylamino)-ethanol: \bigcirc , this work; \bullet , Noll et al.;¹³ \triangle , Smirnova et al.;¹² \diamondsuit , Danov et al.;⁷ \times , Touhara et al.;⁸ *, Steele et al.¹⁴

2-amino-ethanol are of *inter*molecular character. Obviously, spatial crowding of the nitrogen atom disturbs the formation of intermolecular hydrogen bonds in 2-(methylamino)ethanol and 2-(ethylamino)-ethanol, since (-26.6 and -25.3) kJ·mol⁻¹ are lower values in comparison to those of 2-amino-ethanol. Further N-substitution with methyl and ethyl in (dimethylamino)-ethanol (-15.8 kJ·mol⁻¹) and 2-(diethylamino)-ethanol ($-12.6 \text{ kJ} \cdot \text{mol}^{-1}$) causes a substantial decrease of the hydrogen bonding strength, and it is apparent that the most crowded 2-(diethylamino)-ethanol possesses the weakest intermolecular hydrogen bond. Although we cannot quantify the amount of *intra*molecular hydrogen bonds, it can be concluded that the portion of hydrogen bonding in amino-alcohols is shifted from intramolecular character to intermolecular character when the molecular density increases from the gaseous state or diluted solution to the bulk liquid state.

Figure 3. Experimental data of the vapor pressures of 2-(dimethylamino)-ethanol: \bigcirc , this work; \bullet , Quitzsch et al.,¹⁵ \triangle , Stephenson and Malanowski;⁹ ×, Stephenson and Malanowski;⁹ *, Touhara et al.⁸

Figure 4. Experimental data of the vapor pressures of 2-(diethylamino)-ethanol: \bigcirc , this work; \bullet , Steele et al.;¹⁷ \diamondsuit , Lebedeva et al.¹⁶

Table 3. Interpretation of the Strength of the
Intermolecular Hydrogen Bond from the Vaporization
Enthalpies, $\Delta_1^g H_m$ (298.15 K), of Ethanolamines (from This
Work) and Their Homomorphs (in kJ·mol ⁻¹)

$\Delta_{ m l}^{ m g} H_{ m m}(298.15~{ m K})$ amino-ethanol	$\Delta_{ m l}^{ m g} H_{ m m}(298.15~{ m K})$ amine	Δ^a
2-amino-ethanol	propan-1-amine	-28.3
2-(methylamino)-ethanol	<i>N</i> -methylpropan-1-amine	-26.6
2-(ethylamino)-ethanol	N-ethylpropan-1-amine	-25.3
2-(dimethylamino)-ethanol	<i>N,N</i> -dimethylpropan-1-amine	-15.8
46.5 2-(diethylamino)-ethanol	N, N-diethylpropan-1-amine	-12.6

 a Difference between column 2 and column 1 (see text). b From ref 25. c Estimated according to the group-additivity procedure by Lebedev and Miroshnichenko. 26

Literature Cited

- Kulikov, D.; Verevkin S. P.; Heintz, A. Enthalpies of vaporization of a series of linear aliphatic alcohols. Experimental results and predicted values using the ERAS-model. *Fluid Phase Equilib.* 2001, 192, 187–207.
- (2) Kulikov, D.; Verevkin S. P.; Heintz, A. Determination of vaporization enthalpies of the aliphatic branched C₅ and C₆ alcohols from transpiration method. J. Chem. Eng. Data 2001, 46, 1593–1600.
- (3) Wilson A. L. New aliphatic amines. Ind. Eng. Chem. 1935, 27, 867–871.

- (4) Leibush, A. G.; Shorina, E. D. Physicochemical properties of ethanolamines. Zh. Prikl. Khim. 1947, 20, 69–76.
- (5) Matthews, J. B.; Sumner, J. F.; Moelwyn-Hughes, E. A. The Vapour Pressures of Certain Liquids. *Trans. Faraday Soc.* 1950, 46, 797–803.
- (6) McDonald, R. A.; Shrader, S. A.; Stull, D. R. Vapor Pressures and Freezing Points of 30 Organics. J. Chem. Eng. Data 1959, 4, 311– 313.
- (7) Danov, S. M.; Matin, N. B.; Efremov, R. V.; Slashchinina, K. K. Vapor pressure of ethanolamines. *Zh. Fiz. Khim.* **1969**, 43 (3), 733-736.
- (8) Touhara, H.; Okazaki, S.; Okino, F.; Tanaka, H.; Ikari, K.; Nakanishi, K. Thermodynamic properties of aqueous mixtures of hydrophilic compounds. 2-Aminoethanol and its methyl derivatives. J. Chem. Thermodyn. 1982, 14, 145-56.
- (9) Stephenson, R. M.; Malanowski, S. Handbook of the Thermodynamics of Organic Compounds; Elsevier: New York, 1987.
- (10) Daubert, T. E.; Jalowka, J. W.; Goren, V. Vapor pressure of 22 pure industrial chemicals. AIChE Symp. Ser. 1987, 83, 128–156.
- (11) Tochigi, K.; Akimoto, K.; Ochi, K.; Liu, F.; Kawase, Y. Isothermal Vapor-Liquid Equilibria for Water + 2-Aminoethanol + Dimethyl Sulfoxide and Its Constituent Three Binary Systems. J. Chem. Eng. Data 1999, 44, 588-590.
- (12) Smirnova, G. G.; Tereshchenko, G. F.; Blagushina, M. A. Liquidvapor phase equilibrium in the methylethanolamine-methyldiethanolamine system. *Zh. Prikl. Khim.* **1989**, *62*, 182–184.
- (13) Noll, O.; Valtz, A.; Richon, D.; Getachew-Sawaya, T.; Mokbel, I.; Jose, J. Vapor pressures and liquid densities of N-methylethanolamine, diethanolamine, and N-methyldiethanolamine. *ELDATA: Int. Electron. J. Phys.-Chem. Data* **1998**, 4, 105–120.
- (14) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A. Vapor Pressure, Heat Capacity, and Density Along the Saturation Line. Measurements for Cyclohexanol, 2-Cyclohexen-1-one, 1,2-Dichloropropane, 1,4-Di-tert-Butylbenzene, 2-Ethylhexanoic Acid, 2-(Methylamino)ethanol, Perfluoro-n-heptane, and Sulfolane. J. Chem. Eng. Data 1997, 42 (6), 1021–1036.
- (15) Quitzsch, K.; Hofmann, H. P.; Hering, D.; Salzer, R.; Geiseler, G. Isobaric liquid-vapor equilibriums of binary and ternary mixtures of methyl glycol, dimethylaminoethanol, and 2-[2-(dimethylamino)ethoxylethanol. Z. Phys. Chem. (Leipzig) 1970, 243 (5-6), 321– 339.
- (16) Lebedeva, N. D.; Nazarova, L. F.; Katin, Yu. A. Enthalpies of vaporization of a series of bi- and polyfunctional aliphatic compounds. *Termodin. Org. Soedin.* **1977**, *6*, 72–73.
- (17) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A. Measurements of Vapor Pressure, Heat Capacity, and Density along the Saturation Line for Cyclopropane Carboxylic Acid, N,N-Diethylethanolamine, 2,3-Dihydrofuran, 5-Hexen-2-one, Perfluorobutanoic Acid, and 2-Phenylpropionaldehyde. J. Chem. Eng. Data 2002, 47, 715–724.
- (18) Jeffrey, G. A. An Introduction to hydrogen bonding; Oxford University Press: New York, Oxford, U.K., 1997.
- (19) Erbel, K.; Mierzecki, R. Infrared studies on conformation of ethanolamine in solutions. Pol. J. Chem. 1978, 52, 1993–2000.
- (20) Krueger, P. J.; Mettee, H. D. Spectroscopic studies of alcohols. VI. Intramolecular hydrogen bonds in ethanolamine and its Oand N-methyl derivatives. *Can. J. Chem.* **1965**, *43*, 2970–2977.
- (21) Mulla, S. T.; Jose, C. I. Intramolecular hydrogen bonding and intermolecular association of amino alcohols. J. Chem. Soc., Faraday Trans. 1 1986, 82, 691–706.
- Maham, Y.; Hepler, L. G.; Mather, A. E.; Hakin, A. W.; Marriott, R. A. Molar heat capacities of alkanolamines from 299.1 to 397.8 K. Group additivity and molecular connectivity analyses. *J. Chem. Soc., Faraday Trans.* **1997**, *93*, 1747–1750.
- (23) Chickos, J. S.; Hesse, D. G.; Liebman, J. F. A Group Additivity Approach for the Estimation of Heat Capacities of Organic Liquids and Solids. J. Struct. Chem. 1993, 4, 271–278.
- (24) Chickos, J. S.; Acree, W. E., Jr. Enthalpies of Vaporization of Organic and Organometallic Compounds. J. Phys. Chem. Ref. Data 2003, 32, 519-878.
- (25) Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, U.K., 1985; p 300.
- (26) Lebedev, Y. A.; Miroshnichenko, E. A. Thermochemistry of vaporization of organic substances; Nauka: Moscow, 1981.

Received for review June 29, 2004. Accepted November 12, 2004.

JE049761Y